INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR DEPARTMENT OF MATHEMATICS

TUTORIAL SHEET
THIRD SEMESTER (For all Engineering Branches) SUBJECT: MATHEMATICS-III

SUBJECT CODE: MA 301

SERIAL NUMBER 3:

LAPLACE TRANSFORM

Find the Laplace Transforms of the following functions:
(1) $(\sin x-\cos x)^{2}$

Ans. $\left(s^{2}-2 s+4\right) / s\left(s^{2}+4\right)$
(2) $x^{3} e^{-3 x}$

Ans. $6 /(s+3)^{4}$
(3) $2 e^{3 x} \sin 4 x$

Ans. 8/ $\left(s^{2}-6 s+25\right)$
(4) $(x+1)^{2} e^{x}$

Ans. $s^{2}+1 /(s-1)^{3}$
(5) $e^{-x} \sin ^{2} x$

Ans. $2 /(s+1)\left(s^{2}+2 s+5\right)$
(6) $4 \sinh 5 x-3 \cosh 4 x$

Ans. $(20-3 s) /\left(s^{2}-25\right)$
(7) $f(x)=\sin x, 0<x<\pi$

Ans. $\left(e^{-s \pi}+1\right) /\left(s^{2}+1\right)$

$$
=0, x>\pi
$$

(8) $f(x)=\mathrm{e}^{\mathrm{x}}, \quad 0<x<5$

Ans. $\left(1-e^{-5(s-1)}\right) /(s-1)+3 e^{-5 s} / 5$

$$
=3, x>5
$$

(9) $f(x)=\mathrm{e}^{2(\mathrm{x}-3)} \sin 3(\mathrm{x}-3), x>3$ Ans. $3 e^{-3 s} /\left(s^{2}-4 s+13\right)$

$$
=0, x<3
$$

(10) $(\cos a x-\cos b x) / x$ Ans. $\frac{1}{2} \log \left(\frac{s^{2}+b^{2}}{s^{2}+a^{2}}\right)$
(11) If $\mathrm{L}\{\varphi(x)\}=f(s)$ find $\mathrm{L}\{\varphi(x) \cos k x\}$ Ans. $\{f(s-i k)\} / 2+\{f(s+i k)\}$
(12) If $\mathrm{L}\left\{(f(x)\}=e^{-1 / s} / s\right.$, then prove that $L\left\{e^{-x} f(4 x)\right\}=e^{-4 /(s+1)} /(s+1)$.
(13) If $f(x)=2 x, 0 \leq x \leq 1$

$$
=x, x>1
$$

find (i) $\mathrm{L}\left\{(f(x)\}\right.$ (ii) $L\left\{f^{\prime}(x)\right\}$ (iii) does the result $\left.L\left\{f^{\prime}(x)\right\}=s f(x)\right\}-f(0)$ hold for this case. Ans. (i) $2 / s^{2}-e^{-s} / s-e^{-s} / s^{2}$. (ii) $2 / s-e^{-s} / s$.
(14) If $L\left\{f^{\prime \prime}(x)\right\}=\tan ^{-1}(1 / s), f(0)=2, f^{\prime}(0)=-1$, find $L\{(f(x)\}$.

Ans. $\left\{2 s+\tan ^{-1}(1 / s)-1\right\} / s^{2}$.
(15) Prove that $L\{(\sin x) / x\}=\tan ^{-1}(1 / s)$. Hence find $L\{(\sin x) / x\}$.

Ans. $\tan ^{-1}(a / s)$
Evaluate the following integrals
(16) $\int_{0}^{\infty} \frac{e^{-3 x}-e^{-6 x}}{x} d x$
(17) $\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x$
(18) $\int_{0}^{\infty} x \sin x e^{-3 x} d x$
(19) Let $f(x)=x, 0<x<\pi$

$$
=\pi-x, \pi<x<2 \pi
$$

where $f(x)=f(2 \pi+x)$, find $\mathrm{L}\left\{(f(x)\}\right.$. Ans. $\left\{1-e^{-\pi s}(\pi s+1)\right\} /\left(1+e^{-\pi s}\right) s^{2}$.
(20) Given $f(x)=\sin x, 0<x<\pi$

$$
=0, \pi<x<2 \pi
$$

find $\mathrm{L}\{(f(x)\}$, where $f(x)$ is a periodic function of period 2π.
Ans. $1 /\left(1-e^{-\pi s}\right)\left(s^{2}+1\right)$.
Evaluate the following problems
(21) $L \int_{0}^{x} \frac{\sin u}{u} d u$
(22) $L\left\{x \int_{0}^{x} \frac{\sin u}{u} d u\right\}$
$L \int_{0}^{x} \frac{\mathrm{e}^{2 \mathrm{u}} \sin u}{u} d u$
(24) $L \int_{0}^{x} u \mathrm{e}^{-3 u} \cos 4 u d u$

Evaluate the following
(25) $L^{-1}\left\{6 s /\left(s^{2}-16\right)\right\}$
(26) $L^{-1}\left\{(4 s+12) /\left(s^{2}+8 s+16\right)\right\}$
(27) $L^{-1}\left\{\left(s^{2} /(s+2)^{3}\right\}\right.$
(28) $L^{-1}\left\{e^{-2 s} / s^{2}\right\}$

Ans. $\frac{1}{s} \tan ^{-1} \frac{1}{s}$
Ans. $1 / s\left(s^{2}+1\right)+\left\{\cot ^{-1} s\right\} / s^{2}$.

Ans. $\left\{\cot ^{-1}(s-2)\right\} / s$.
Ans. $\frac{\left(s^{2}+6 s-7\right)}{s\left(s^{2}+6 s+25\right)^{2}}$.

Ans. $6 \cosh 4 x$.
Ans. $4 e^{-4 x}(1-x)$.
Ans. $e^{-2 x}\left(1-4 x+2 x^{2}\right)$.
Ans. $(x-2)$ for $x>2$ and 0 for $x<2$.
(29) $L^{-1}\left\{s e^{-2 s} /\left(s^{2}+3 s+2\right)\right\}$ Ans. $2 e^{-2 x+4}-e^{-x+2}$ for $x>2$ and 0 for $x<2$.
(30) $L^{-1}\left\{s /\left(s^{2}-16\right)^{2}\right\}$
(31) $L^{-1}\left\{\log \left(1+1 / s^{2}\right)\right\}$
(32) $L^{-1}[\log \{(s+2) /(s+1)\}]$
(33) $L^{-1}\left\{\tan ^{-1}(s+1)\right\}$
(34) $\left.L^{-1}[\log (s-1) /(s+1)\}^{1 / 2}\right]$
(35) $L^{-1}\left\{(s+2) /(s+3) s^{2}\right\}$
(36) $\left.L^{-1}\left[\log \left(s^{2}+1\right) /\left(s^{2}+s\right)\right\}\right]$
(37) $L^{-1}\{1 /(s-1)(s-2)\}$
(38) $L^{-1}\left\{1 /(s+1)\left(s^{2}+1\right)\right\}$
(39) $L^{-1}\left\{1 / s\left(s^{2}+4\right)^{2}\right\}$

Ans. $\sinh 4 x / 8$
Ans. $2(1-\cos x) / x$.
Ans. $\left(e^{-x}-e^{-2 x}\right) / x$
Ans. $-e^{-x} \sin x / x$
Ans. $-\sinh x / x$
Ans. $2 x / 3-e^{-3 x} / 9+1 / 9$.
Ans. $\left(1+e^{-x}-2 \cos x\right) / x$
Ans. $e^{-x}-e^{-2 x}$
Ans. $\left(\sin x+e^{-x}-\cos x\right) / 2$
Ans. $(1-x \sin 2 x-\cos 2 x) / 16$
(40) Using convolution theorem verify that $\int_{0}^{u} \sin x \cos (u-x) d x=u \sin u / 2$.

SERIAL NUMBER 4:

LINEAR PROGRAMMING PROBLEMS

1. If $\alpha_{1}=(1,2,0), \alpha_{2}=(3,-1,1), \alpha_{3}=(4,1,1)$;show that the set $\mathrm{S}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is linearly dependent.
2. Show that the set of vectors $S=\{(1,2,4),(1,0,0),(0,1,0),(0,0,1)\}$ is linearly dependent in R^{3} but the set $\mathrm{T}=\{(1,2,0),(0,3,1),(-1,0,1)\}$ is linearly independent.
3. Show that the vectors $\alpha=(1,2,4), \beta=(2,-1,3), \gamma=(0,1,2), \delta=(-3,7,2)$ are linearly dependent and the relation between them is $-9 \alpha+12 \beta+5 \delta-5 \gamma=0$.
4. Show that the vectors
(i) $\{(2,1,0),(1,1,0),(4,2,0)\}$ form a basis of R^{3}
(ii) $\quad\{(1,1,2),(1,2,5),(5,3,4)\}$ do not form a basis of R^{3}
(iii) $\quad\{(2,1,4),(1,-1,2),(3,1,-2)\}$ form a basis of R^{3}
5. Let $\mathrm{V}(\mathrm{R})=P_{n}$ be the vector space of polynomials in t over the field of real numbers of degree $\leq n$, show that the set $S=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is a basis of V.
6. Obtain all the basic solutions to the following system of linear equation

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}=4 \\
2 x_{1}+x_{2}+5 x_{3}=5 .
\end{gathered}
$$

$$
\text { (Ans : } \left.(2,1,0)^{T},(5,0,-1)^{T},\left(0, \frac{5}{3}, \frac{2}{3}\right)^{T}\right)
$$

7. Show that the following system of linear equations has two degenerate basic feasible solutions and the non-degenerate basic solution is not feasible:

$$
\begin{gathered}
3 x_{1}+x_{2}-x_{3}=3 \\
2 x_{1}-2 x_{2}+x_{3}=2
\end{gathered}
$$

8. Show that although $(2,3,2)^{T}$ is a feasible solution to the system of equations

$$
\begin{gathered}
x_{1}+x_{2}+2 x_{3}=9 \\
3 x_{1}+2 x_{2}+5 x_{3}=22 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

It is not a basic solution. How many basic solutions this system may have ? Find all the basic feasible solution of the system.
9. Show that all three of the basic solutions of the system

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}=6 \\
2 x_{1}+x_{2}+4 x_{3}=4
\end{array}
$$

Exists and they are $\left(0^{*}, \frac{12}{5}, \frac{2}{5}\right)^{T},\left(-6,0^{*}, 4\right)^{T}$ and $\left(\frac{2}{3}, \frac{8}{3}, 0^{*}\right)^{T}$.
10. If x_{1}, x_{2} be real ,show that the set given by
(i) $S_{1}=\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2} \leq 50, x_{1}+2 x_{2} \leq 80,2 x_{1}+x_{2} \geq 0, x_{1}, x_{2} \geq 0\right\}$ is a convex set.
(ii) $\quad S_{2}=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \leq 1, x_{1} x_{2} \geq 0\right\}$ is not a convex set.
(iii) $\quad S_{3}=\left\{\left(x_{1}, x_{2}\right): x_{2}^{2} \geq 4 x_{1}\right\}$ is not a convex set.
(iv) $S_{4}=\left\{\left(x_{1}, x_{2}\right): x_{2}-3 \geq-x_{1}^{2}, x_{1}, x_{2} \geq 0\right\}$ is a convex set.
11. Find the extreme points, if any, of the following sets :
(i) $\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}): x^{2}+y^{2} \leq 25\right\}$
(ii) $\mathrm{B}=\left\{\left(x_{1}, x_{2}\right):\left|x_{1}\right| \leq 1,\left|x_{2}\right| \leq 1\right\}$
(iii) $\mathrm{C}=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2} \leq 1, x_{1}, x_{2} \geq 0\right\}$
[Ans:
(i) Every points on the circumference of circle
(ii) $(1,1),(-1,1),(1,-1),(-1,-1)$
(iv) $\quad(0,1),(0,0),(1,0)$ and all points on circular boundary]
12. A production planar in a soft drink plant has two bottling machines A and B. A is designed for 8 - ounce bottles and B for 16 - ounce bottles. However, each can be used on both types with some loss of efficiency. The following data is available

Machine	8 - ounce bottles	16 - ounce bottles
A	$100 / \mathrm{min}$	$45 / \mathrm{min}$
B	$60 / \mathrm{min}$	$75 / \mathrm{min}$

The machine can be run 8 hours per day, 5 days per week, profit on 8 - ounce bottle is 15 paise and on 16 - ounce bottle is 25 paise. Weekly production of the drink cannot exceed

300,000 ounces and the market can absorb 25,000 of 8 - ounce bottles and 7000 of 16ounce bottles per week. The planner wishes to maximize his profit. Formulate this an model.

Ans:
Maximize $\mathrm{Z}=0.15 x_{1}+0.25 x_{2}$
Subject to $2 x_{1}+5 x_{2} \leq 480000$
$5 x_{1}+4 x_{2} \leq 720000$
$8 x_{1}+16 x_{2} \leq 300000$
$0 \leq x_{1} \leq 25000$
$0 \leq x_{2}=7000$
13. A firm produces an alloy having the following specifications (i) Specific gravity ≤ 0.98, (ii) Chromium $\geq 8 \%$, (iii) Melting point $\geq 450^{\circ} \mathrm{C}$.
Raw materials $\mathrm{A}, \mathrm{B}, \mathrm{C}$ having the properties in the table below can be used to make the alloy.
Property \quad Properties of raw materials

	A	B	C
Specific gravity	0.92	0.97	1.04
Chromium	7%	13%	16%
Melting Point	$440^{\circ} \mathrm{C}$	$490^{\circ} \mathrm{C}$	$480^{\circ} \mathrm{C}$

Costs of various raw materials per unit ton are : Rupees 90 for A, Rupees 280 for B and Rupees 40 for C. The objective is to find the proportions in which A, B, C be used to obtain an alloy of desired properties in which the cost of raw materials is minimum. Formulate this blending problem as an LP model.
[Ans: Minimize Z=90 $x_{1}+280 x_{2}+40 x_{3}$
Subject to $0.92 x_{1}+0.97 x_{2}+1.04 x_{3} \geq 0.98$

$$
\begin{aligned}
& 7 x_{1}+13 x_{2}+16 x_{3} \geq 8 \\
& 440 x_{1}+490 x_{2}+480 x_{3} \geq 450 \\
& x_{1}+x_{2}+x_{3}=100 \\
& \quad x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

14. A firm manufactures two products A and B on which the profit earned per unit are rupees 3 and rupees 4 respectively. Each product is processed on two machines M_{1} and M_{2}. Product A requires one minute on M_{1} and one minute on M_{2} while processing of product B requires one minute on M_{1} and one minute on $M_{2} . M_{1}$ is not available for more than 7 hours 30 minutes while M_{2} is available for 10 hours during any working day. Find the number of units of products A and B need to manufactured to get maximum profit. Formulate this as an LP model and solve by graphical method.
[Ans: $x_{A}=0, x_{B}=450, Z_{\max }=1800$]
15. Using graphical method, show that the LPP

$$
\begin{gathered}
\text { Maximize } Z=2 x_{1}+3 x_{2} \\
\text { Subject to } x_{1}-x_{2} \leq 2 \\
x_{1}+x_{2} \leq 4 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Has an unbounded solution.
16. A firm manufactures three product A, B and C . The profits per unit product are rupees 3 , rupees 2 and rupees 4 respectively. The firm has two machines and the required processing time in minutes for each machine on each product is given below.

Machines Products

	A	B	C
X	4	3	5
Y	2	2	4

Machines X and Y have 2000 and 1500 machine-minutes respectively. The firm must manufacture 100 A's, 200 B's and 50 C's but not more than 150 A's. Set up an LP model to maximize the profit.
[Ans. Maximize $\mathrm{Z}=3 x_{A}+2 x_{B}+2 x_{C}$

$$
\text { Subject to } 4 x_{A}+3 x_{B}+5 x_{C} \leq 2000
$$

$$
\begin{aligned}
& 2 x_{A}+3 x_{B}+5 x_{C} \leq 1500 \\
& \left.100 \leq x_{A} \leq 150, x_{B} \geq 200, x_{C} \geq 50=50 .\right]
\end{aligned}
$$

17. The manager of an oil refinery has to decide upon the optimal mix of two possible blending processes of which the inputs and outputs per production run as follows:

Input
Output

Crude A	Crude B	Gas X	Gas Y
5	3	5	8
2	4	5	4

The maximum amount available of Crudes A and B are 200 units and 150 units respectively. Market requirements show that at least 100 units of gas X and 80 units of gas Y must be produced. The profit per production run from process 1 and process 2 are rupees 3 and rupees 4 respectively. Formulate the problem as an LPP.

$$
\begin{array}{r}
\text { [Ans: Maximize } Z=3 x_{1}+4 x_{2} \\
\text { Subject to } 5 x_{1}+4 x_{2} \leq 200 \\
3 x_{1}+5 x_{2} \leq 150 \\
5 x_{1}+4 x_{2} \geq 100 \\
8 x_{1}+4 x_{2} \geq 80 \\
x_{1}, x_{2} \geq 0 .
\end{array}
$$

18. A firm is engaged in breeding pigs. The pigs are fed on various products grown on the farm. Because of the need to ensure certain nutrient constituents, it is necessary to buy additional products, which we shall call A and B. The nutrient constituents (vitamins and proteins) in each unit of the products are given below:

Nutrients	Nutrient contents in the products A	B	Minimum amount of Nutrients
1	36	6	108
2	3	12	36
3	20	20	100

Products A costs Rupees 20 per unit and product B costs Rupees 40 per unit. Formulate the L.P model for products A and B to be purchased at the lowest possible costs so as to provide the pigs with nutrients not less than given in the table.

$$
\begin{array}{r}
\text { [Ans: : Maximize } \mathrm{Z}=20 x_{A}+40 x_{B} \\
\text { Subject to } 36 x_{A}+6 x_{B} \geq 108 \\
3 x_{A}+12 x_{B} \geq 36 \\
20 x_{A}+4 x_{B} \geq 100 \\
x_{A}, x_{B} \geq 0 .
\end{array}
$$

19. Make a graphical representation of the set of constraints of the following LPP. Find the extreme points of the feasible region. Finally, solve the problems graphically.
(i) Maximize $Z=20 x_{1}+10 x_{2}$

Subject to $x_{1}+x_{2} \leq 40$

$$
3 x_{1}+x_{2} \geq 30
$$

$$
4 x_{1}+3 x_{2} \geq 60
$$

$$
x_{1}, x_{2} \geq 0
$$

(ii) Maximize $Z=2 x_{1}+x_{2}$

Subject to $x_{1}+x_{2} \geq 5$

$$
\begin{gathered}
2 x_{1}+3 x_{2} \leq 20 \\
4 x_{1}+3 x_{2} \leq 25 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(iii) Maximize $Z=4 x_{1}+3 x_{2}$

Subject to $2 x_{1}+x_{2} \leq 1000$

$$
\begin{aligned}
& x_{1}+x_{2} \leq 800 \\
& 0 \leq x_{1} \leq 400 \\
& 0 \leq x_{2} \leq 700
\end{aligned}
$$

[Ans: (i) $(5,0),\left(\frac{25}{4}, 0\right),\left(\frac{5}{2}, 5\right),\left(0, \frac{20}{3}\right),(0,5), x_{1}^{*}=\frac{25}{4}, x_{2}^{*}=0, Z_{\max }=\frac{25}{2}$.
(ii) $(15,0),(40,0),(4,18),(6,12), x_{1}^{*}=6, x_{2}^{*}=12, Z_{\text {min }}=240$.
(iii(0,0), $(400,0),(400,200),(200,600),(100,700),(0,700), x_{1}^{*}=200, x_{2}^{*}=600, Z_{\max }$ $=2600$.]
20. (a) Let $x_{1}=2, x_{2}=4$ and $x_{3}=1$ be a feasible solution to the system of equations

$$
\begin{gathered}
2 x_{1}-x_{2}+2 x_{3}=2 \\
x_{1}+4 x_{2}=18
\end{gathered}
$$

Reduce the given feasible solution to a basic feasible solution.
(b) If $x_{1}=2, x_{2}=3, x_{3}=1$ is a feasible solution of the LPP

Maximize $Z=x_{1}+x_{2}+4 x_{3}$
Subject to $2 x_{1}+x_{2}+4 x_{3}=11$

$$
\begin{gathered}
3 x_{1}+3 x_{2}+5 x_{3}=14 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Find a basic feasible solution of the problem.
(c) Reduce the feasible solution $x_{1}=2, x_{2}=1, x_{3}=1$ to the system of the equations

$$
\begin{gathered}
x_{1}+4 x_{2}-x_{3}=5 \\
2 x_{1}+3 x_{2}+x_{3}=8
\end{gathered}
$$

To a basic feasible solution.
(d) $x_{1}=2, x_{2}=2, x_{3}=1, x_{4}=0$ is a feasible solution of the set of equations

$$
\begin{gathered}
11 x_{1}+2 x_{2}-9 x_{3}+4 x_{4}=6 \\
15 x_{1}+3 x_{2}-12 x_{3}+5 x_{4}=9 .
\end{gathered}
$$

Find out the basic feasible solutions and prove that one of them is non-degenerate and other is degenerate.
[Ans: (a) $x_{2}=\frac{9}{2}, x_{3}=\frac{13}{4}$ with $x_{1}=0$ (non-basic)
(b) $x_{1}=\frac{1}{2}, x_{3}=\frac{5}{2}$ with $x_{2}=0$ (non-basic)
(c) $x_{1}=\frac{17}{5}, x_{2}=\frac{2}{5}$ with $x_{3}=0$ (non-basic)
$x_{2}=\frac{13}{7}, x_{3}=\frac{17}{7}$ with $x_{1}=0$ (non-basic)
(d) $x_{1}=3, x_{3}=3, x_{4}=0$ with $x_{2}=0$ (non-basic)
$x_{2}=0, x_{3}=0, x_{4}=0$ with $x_{1}=0$ (non-basic)
(e) $x_{1}=0, x_{2}=\frac{9}{2}, x_{3}=\frac{29}{4}$.
21. Solve the following LPP by simplex method:

$$
\text { Minimize } Z=x_{1}-3 x_{2}+2 x_{3}
$$

Subject to $3 x_{1}-x_{2}+2 x_{3} \leq 7$
$-2 x_{1}-4 x_{2} \leq 12$
$-4 x_{1}+3 x_{2}+8 x_{3} \leq 10$
$x_{1}, x_{2}, x_{3} \geq 0$
[Ans: $x_{1}^{*}=4, x_{2}^{*}=5, x_{3}^{*}=0$,
$\left.Z_{\text {min }}=-11\right]$
22. Show that the following LPP as an unbounded solution:

Minimize $\mathrm{Z}=4 x_{1}+x_{2}+4 x_{3}+5 x_{4}$

$$
\begin{gathered}
\text { Subject to }-4 x_{1}+6 x_{2}+5 x_{3}-4 x_{4} \leq 20 \\
3 x_{1}-2 x_{2}+4 x_{3}+x_{4} \leq 10 \\
8 x_{1}-3 x_{2}+3 x_{3}+2 x_{4} \leq 20 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{gathered}
$$

23. Solve the following LPP by simplex method:
(i) Minimize $\mathrm{Z}=x_{1}+2 x_{2}$

Subject to $-x_{1}+2 x_{2} \leq 8$

$$
\begin{gathered}
x_{1}+2 x_{2} \leq 12 \\
x_{1}-2 x_{2} \leq 3 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

[Ans: $\left.x_{1}^{*}=\frac{15}{2}, x_{2}^{*}=\frac{9}{4}, Z_{\text {min }}=12\right]$)
(ii) Maximize $\mathrm{Z}=3 x_{1}+2 x_{2}+x_{3}$

Subject to $3 x_{1}+4 x_{2}+3 x_{3} \leq 42$
$5 x_{1}+3 x_{3} \leq 45$
$3 x_{1}+6 x_{2}+2 x_{3} \leq 41$
$x_{1}, x_{2}, x_{3} \geq 0$
[Ans: $x_{1}^{*}=\frac{3}{2}, x_{2}^{*}=\frac{7}{3}, x_{3}^{*}=0$,
$\left.Z_{\text {max }}=\frac{55}{6}\right]$
24. Use Charnes' Big-M method to solve the following LPP :
(i) Minimize $Z=4 x_{1}+8 x_{2}+3 x_{3}$

$$
\begin{array}{llr}
\text { Subject to } & x_{1}+x_{2} & \geq 2 \\
2 x_{1} & +x_{3} \geq 5 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

[Ans: $x_{1}^{*}=\frac{5}{2}, x_{2}^{*}=0, x_{3}^{*}=0$,
$\left.Z_{\text {min }}=10\right]$
(ii) Minimize $Z=2 x_{1}-3 x_{2}$

Subject to $-x_{1}+x_{2} \geq-2$
$5 x_{1}+4 x_{2} \geq 46$
$7 x_{1}+2 x_{2} \geq 32$
$x_{1}, x_{2} \geq 0$
[Ans: $x_{1}^{*}=4, x_{2}^{*}=2, Z_{\text {min }}=2$]
25. Consider the problem :

Minimize $\mathrm{Z}=3 x_{1}+2 x_{2}+3 x_{3}$
Subject to $2 x_{1}+x_{2}+x_{3} \leq 2$

$$
\begin{array}{r}
3 x_{1}+4 x_{2}+2 x_{3} \geq 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

By using the M -technique show that the optimal solution can include an artificial basic variable at the zero level.
26. A small scale industrialist produces four types of machines M_{1}, M_{2}, M_{3} and M_{4} made of steel and brass. The amount of steel and brass required for each machine and the number of man-weeks of labour required to manufacture and assemble one unit of each machine are as follows:

$$
\begin{array}{lllll}
M_{1} & M_{2} & M_{3} & M_{4} & \text { Availability }
\end{array}
$$

Steel	6	5	3	2	100 kg
Brass	3	4	9	2	75 kg
Man-Weeks	1	2	1	2	20

The labour is restricted to 20 man-weeks, steel is restricted to 100 kg per week and brass 75 kg per weeks. The industrialist's profit on each unit of $M_{1}, M_{2}, M_{3}, M_{4}$ is rupees 6 ,rupees 4 ,rupees 7 and rupees 5 respectively. How many of each type of machine should be produced to maximize his profit, and how much is his profit?
[Ans: $M_{1}^{*}=15, M_{2}^{*}=0, M_{3}^{*}=\frac{10}{3}, M_{4}^{*}=0, Z_{\max }=\frac{340}{3}$.
27. Solve the following LPP, using two-phases of the simplex method:
(i) Minimize $Z=x_{1}+x_{2}$

Subject to $2 x_{1}+x_{2} \geq 4$

$$
x_{1}+7 x_{2} \geq 7
$$

$$
x_{1}, x_{2} \geq 0
$$

[Ans: $x_{1}^{*}=\frac{21}{13}, x_{2}^{*}=\frac{10}{13}, Z_{\text {min }}=\frac{31}{13}$]
(ii) Minimize $Z=2 x_{1}+x_{2}$

Subject to $5 x_{1}+10 x_{2}-x_{3}=8$
$x_{1}+x_{2}+\quad x_{4}=7$
$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$
Ans: $\left.x_{1}^{*}=0, x_{2}^{*}=\frac{4}{5}, x_{3}^{*}=0, x_{4}^{*}=\frac{1}{5} Z_{\text {min }}=\frac{4}{5}\right]$
(iii) Minimize $Z=\frac{15}{2} x_{1}-3 x_{2}$

Subject to $3 x_{1}-x_{2}-x_{3} \geq 3$

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3} \geq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0 \quad\left[\text { Ans: } x_{1}^{*}=\frac{5}{4}, x_{2}^{*}=0, x_{3}^{*}=\frac{3}{4}, Z_{\text {min }}=\frac{75}{8}\right]
\end{aligned}
$$

28. Solve the following LPP, using two-phases of the simplex method:
(i) Minimize $Z=5 x_{1}-2 x_{2}+3 x_{3}$

$$
\begin{aligned}
& \text { Subject to } 2 x_{1}+2 x_{2}-x_{3} \geq 2 \\
& 3 x_{1}-4 x_{2} \leq 3 \\
& x_{2}+3 x_{3} \leq 5 \\
& x_{1}, x_{2}, x_{3}, \geq 0 \quad\left[\text { Ans: } x_{1}^{*}=\frac{23}{23}, x_{2}^{*}=5, x_{3}^{*}=0, Z_{\text {min }}=\frac{85}{3}\right]
\end{aligned}
$$

(ii) Minimize $Z=2 x_{1}-x_{2}+2 x_{3}$

Subject to $x_{1}+x_{2}-3 x_{3} \geq 8$
$4 x_{1}-x_{2}+x_{3} \geq 2$ $2 x_{1}+3 x_{2}-x_{3} \geq 4$
$x_{1}, x_{2}, x_{3} \geq 0 \quad$ [The problem has an unbounded solution]
29. Solve the following LPP:
(i) Minimize $Z=4 x_{1}+2 x_{2}$

Subject to $3 x_{1}+x_{2} \geq 27$
$-x_{1}-x_{2} \leq 2$
$x_{1}+2 x_{2} \geq 30$
x_{1} and x_{2} are unrestricted in sign.
[Ans: $x_{1}^{*}=\frac{24}{5}, x_{2}^{*}=\frac{63}{5}, Z_{\text {min }}$
$\left.=\frac{222}{5}\right]$
(ii) Minimize $Z=2 x_{1}+5 x_{2}$

Subject to $x_{1}+2 x_{2} \leq 8$
$x_{1} \leq 4$
$0 \leq x_{2} \leq 3$
x_{1} is unrestricted in sign.
[Ans: $x_{1}^{*}=2, x_{2}^{*}=3, Z_{\text {min }}$ $=19]$
30. an incomplete tableau of an LPP by simplx method is given bellow(intermediate stage).

		c_{j}	-4	-2	0	0	0	-M
c_{B}	y_{B}	x_{B}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	$y_{a_{1}}$
-4	y_{1}	$\frac{24}{5}$			$-\frac{2}{5}$	0	$\frac{1}{5}$	
-M	$y_{a_{1}}$	$\frac{18}{5}$			$\frac{1}{5}$	-1	$\frac{2}{5}$	
-2	y_{2}	$\frac{63}{5}$						
		$z_{j}-c_{j}$	0	0	$-\frac{M}{5}+\frac{6}{5}$	M	$-\frac{2 M}{5}+\frac{2}{5}$	0

(i) Complete the table, (ii) Find the entering and departing vectors, (iii) Show that the unique optimal solution of the problem is $x_{1}^{*}=3, x_{2}^{*}=18$.

