INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR DEPARTMENT OF MATHEMATICS GST SHEET
FIRST SEMESTER (For B. of Architecture)
SUBJECT: MATHEMATICS-IA SUBJECT CODE: MA 101A

SERIAL NUMBER 1:

FUNCTIONS OF SINGLE REAL VARIABLE AND SEVERAL REAL VARIABLES

1. If $u=\sin a x+\cos a x$, show that

$$
u_{n}=a^{n}\left\{1+(-1)^{n} \sin 2 a x\right\}^{\frac{1}{2}}
$$

2. If $x \sin \theta+y \cos \theta=a$ and $x \cos \theta-y \sin \theta=b$, prove that

$$
\frac{d^{p} x}{d \theta^{p}} \cdot \frac{d^{q} y}{d \theta^{q}}-\frac{d^{q} x}{d \theta^{q}} \cdot \frac{d^{p} y}{d \theta^{p}}
$$

is constant.
3. Prove that if $y=\left(x^{2}-1\right)^{n}$, then $\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0$. Hence show that if $z=D^{n}\left(x^{2}-1\right)^{n}$, then z satisfies the following second order differential equation:

$$
\left(1-x^{2}\right) \frac{d^{2} z}{d x^{2}}-2 x \frac{d z}{d x}+n(n+1) z=0
$$

4. Let $P_{n}=D^{n}\left(x^{n} \log x\right)$. Prove the recurrence relation

$$
P_{n}=n P_{n-1}+(n-1)!
$$

Hence show that $P_{n}=n!\left(\log x+1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)$.
5. If $y=\sin ^{-1} x$, then show that

$$
\begin{aligned}
& \text { (i) }\left(1-x^{2}\right) y_{2}-x y_{1}=0 \\
& \text { (ii) }\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0
\end{aligned}
$$

Find also the value of $\left(y_{n}\right)_{0}$.
Ans) 0 or $\{1.3 .5 \ldots(n-2)\}^{2}$ according as n is even or odd.
6. If $y=\cosh \left(\sin ^{-1} x\right)$, prove that
(i) $\left(1-x^{2}\right) y_{2}-x y_{1}-y=0$;
(ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}=\left(n^{2}+1\right) y_{n}$.
7. Prove, by mathematical induction, that $\frac{d^{n}}{d x^{n}}\left(x^{n-1} e^{\frac{1}{x}}\right)=(-1)^{n} \frac{e^{\frac{1}{x}}}{x^{n+1}}$.
8. If $f(x)=\tan x$, prove that

$$
\mathrm{f}^{\mathrm{n}}(0)-\mathrm{n}_{\mathrm{c}_{2}} \mathrm{f}^{\mathrm{n}-2}(0)+\mathrm{n}_{\mathrm{c}_{4}} \mathrm{f}^{\mathrm{n}-4}(0)-\cdots=\sin \frac{\mathrm{n} \pi}{2}
$$

9. If $y=x^{n-1} \log x_{1}$ show that $y_{n}=\frac{(n-1)!}{x}$.
10. If $\mathrm{f}(\mathrm{h})=\mathrm{f}(0)+\mathrm{hf}^{\prime}(0)+\frac{\mathrm{h}^{2}}{2!} \mathrm{f}^{50}(\theta \mathrm{~h}), 0<\theta<1$, find θ when $\mathrm{h}=7$ and $f(x)=\frac{1}{1+x}$.

Ans) 1/7.
11. Show that

$$
(x+h)^{\frac{3}{2}}=x^{\frac{3}{2}}+\frac{3}{2} x^{\frac{1}{2}} h+\frac{3}{2} \cdot \frac{1}{2} \frac{h^{2}}{2!} \frac{1}{\sqrt{(x+\theta h)}}, 0<\theta<1 .
$$

Find θ, when $\mathrm{x}=0$.
Ans) 9/64.
12. (i) Prove that $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}=f^{\prime}(a)$, provided $f^{\prime}(x)$ is continuous.
(ii) Prove that $\lim _{h \rightarrow 0} \frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}=f^{\infty 5}(a)$, provided $f^{\infty 5}(x)$ is continuous.
13. Show that $\frac{x}{1+x}<\log (1+x)<x$ for all $\mathrm{x}>0$.
14. If $a=-1, b \geq 1$ and $f(x)=1 /\|x\|_{\text {a }}$ prove that Lagrange's MVT is not applicable for f in $[\mathrm{a}, \mathrm{b}]$. But check that the conclusion of the theorem is TRUE if $b>1+\sqrt{2}$.
15. Given: $y=f(x)=\frac{1}{\sqrt{1+2 x}}$,
(i) Prove that $(1+2 x) y_{n+1}+(2 n+1) y_{n}=0$.
(ii) Expand $f(x)$ by Maclaurin's Theorem with remainder after n terms. Write the remainders both in Lagrange's and Cauchy's forms.

Ans) $f(x)=1-x+\frac{1.3}{2!} x^{2}-\frac{1.3 .5}{3!} x^{3}+\cdots+(-1)^{n-1} \frac{1.3 .5 \omega(2 n-3)}{(n-1)!} x^{n-1}+R_{n}$,
where $R_{n}=$ Remainder after n terms in Lagrange's form

$$
=\frac{x^{n}}{n!}(-1)^{n} \frac{1.3 .5 m(2 n-1)}{(1+2 \theta x)^{\frac{2 n+1}{2}}}(0<\theta<1),
$$

$$
\begin{aligned}
\mathbf{R}_{\mathrm{n}} & =\text { Remainder after } \mathrm{n} \text { terms in Cauchy's form } \\
& =\frac{x^{n}}{(n-1)!}(1-\theta)^{n-1}(-1)^{\mathrm{n}} \frac{1.3 .5 \ldots(2 n-1)}{(1+2 \theta x)^{\frac{2 n+1}{2}}}(0<\theta<1)
\end{aligned}
$$

16. Expand the following functions in powers of x in infinite series stating in each case the conditions under which the expansion is valid:
(i)
$\cos x$,
(ii) $e^{x}{ }_{g}$
(iii) $\log (1+x)$.

Ans) (i) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots$ to α, for all values of x. (ii) $e^{x}=1+\mathrm{x}+\frac{\mathrm{x}^{2}}{2!}+\frac{\mathrm{x}^{3}}{3!}+\cdots$ to α, for all values of x .
(iii) $\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots$ to α, is valid for $-1<x \leq 1$.
17. If $y=e^{\operatorname{asin}^{-1} x}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots$, prove that
(i) $\left(1-x^{2}\right) y_{2}=x y_{1}+a^{2}$
(ii) $(n+1)(n+2) a_{n+2}=\left(n^{2}+a^{2}\right) a_{n}$
and hence obtain the expansion of $e^{\operatorname{asin}^{-1} x}$.
Ans) $1+a x+\frac{a^{2} x^{2}}{2!}+\frac{a\left(a^{2}+1^{2}\right)}{3!} x^{3}+\frac{a^{2}\left(a^{2}+2^{2}\right)}{4!} x^{4}+\frac{a\left(a^{2}+1^{2}\right)\left(a^{2}+3^{2}\right)}{5!} x^{5}+\cdots$
18. Expand $\left(\sin ^{-1} x\right)^{2}$ in a series of ascending powers of x .

Ans) $\frac{1}{2!} \cdot 2 x^{2}+\frac{2^{2}}{4!} \cdot 2 x^{4}+\frac{2^{2} \cdot 4^{2}}{6!} \cdot 2 x^{6}+\frac{2^{2} \cdot 4^{2} \cdot 6^{2}}{8!} \cdot 2 x^{8}+\cdots$
19. If $y=\sin \left(m \sin ^{-1} x\right)$, show that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0_{1}
$$

and hence obtain the expansion of $\sin \left(m \sin ^{-1} x\right)$.

$$
\text { Ans) } m x-\frac{m\left(m^{2}-1^{2}\right)}{3!} x^{3}+\frac{m\left(m^{2}-1^{2}\right)\left(m^{2}-3^{2}\right)}{5!} x^{5}-\cdots
$$

20. If $y=e^{a x} \cos b x$, prove that

$$
y_{2}-2 a y_{1}+\left(a^{2}+b^{2}\right) y=0
$$

and hence obtain the expansion of $e^{a x} \cos b x$.
Deduce the expansions of $e^{a x}$ and $\cos b x$.

$$
\text { Ans) } \begin{aligned}
1+a x+\frac{a^{2}-b^{2}}{2!} & x^{2}+\frac{a\left(a^{2}-3 b^{2}\right)}{3!} x^{3}+\cdots \\
\mathbf{e}^{a x} & =1+a x+\frac{a^{2} x^{2}}{2!}+\cdots \\
\cos b x & =1-\frac{b^{2} x^{2}}{2!}+\frac{b^{4} x^{4}}{4!}-\cdots
\end{aligned}
$$

21. Show that the radius of curvature at the point (r, θ) on the cardioide $r=a(1-\cos \theta)$ varies as $\sqrt{ }$ r.
22. Find the radius of curvature at the origin of the curve $x^{3}+y^{3}=3 a x y$.

Ans) $3 \alpha / 2,3 \alpha / 2$.
23. Show that for the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$, the radius of curvature at an extremity of the major axis is equal to half the latus-rectum.
24. If ρ_{1} and ρ_{2} be the radii of curvature at the ends of a focal chord of the parabola $y^{2}=4 a x$, then show that

$$
\rho_{1}^{-\frac{2}{3}}+\rho_{2}^{-\frac{2}{3}}=(2 a)^{-\frac{2}{3}}
$$

25. Show that the radius of curvature at any point of the equiangular spiral subtends a right angle at the pole.
26. Find the radius of curvature at the point (p, r) of the curve $r^{m+1}=a^{m} p$.

$$
\text { Ans) } \frac{a^{m}}{(m+1) r^{m-1} 1^{*}}
$$

27. Show that the chord of curvature through the pole for the curve $p=f(r)$ is given by $2 f(r) / f^{\prime}(r)$.
28. Find the asymptotes of the curve

$$
\begin{aligned}
& 3 x^{3}+2 x^{2} y-7 x y^{2}+2 y^{3}-14 x y+7 y^{2}+4 x+5 y=0 . \\
& \text { Ans) } 6 y-6 x+7=0,2 y-6 x+3=0,6 y+3 x+5=0 .
\end{aligned}
$$

29. Find the asymptotes of the curve

$$
\begin{aligned}
& (y+x+1)(y+2 x+2)(y+3 x+3)(y-x)+x^{2}+y^{2}-8=0 . \\
& \text { Ans) } y+x+1=0, y+2 x+2=0, y+3 x+3=0, y-x=0 .
\end{aligned}
$$

30. Find the asymptotes of the curve

$$
\begin{aligned}
& x^{2}(x+y)(x-y)^{2}+2 x^{3}(x-y)-4 y^{3}=0 . \\
& \quad \text { Ans) } x=2, x=-2, x-y+2=0, x-y-1=0, x+y+1=0 .
\end{aligned}
$$

31. Show that the asymptotes of the curve

$$
x^{2} y^{2}-a^{2}\left(x^{2}+y^{2}\right)-a^{3}(x+y)+a^{4}=0
$$

form a square two of whose angular points lie on the curve.
32. Find the equation of the cubic which has the same asymptotes as the curve

$$
x^{3}-6 x^{2} y+11 x y^{2}-6 y^{3}+x+y+1=0 .
$$

and which touches the axis of y at the origin and goes through the point $(3,2)$.

$$
\text { Ans) } x^{3}-6 x^{2} y+11 x y^{2}-6 y^{3}-x=0 .
$$

33. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that
(i) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{3}{x+y+z}$,
(ii) $\frac{\partial^{x} u}{\partial x^{2}}+\frac{\partial^{x} u}{\partial y^{2}}+\frac{\partial^{x} u}{\partial z^{2}}=-\frac{3}{(x+y+z)^{2}}$.
34. Verify Euler's theorem for the function $u=\frac{\frac{1}{\frac{1}{4}}+\mathrm{y}^{\frac{1}{4}}}{\mathrm{u}^{\frac{1}{3}}+\mathrm{y}^{\frac{1}{3}}}$.
35. The side a of a triangle $A B C$ is calculated from b, c, A. If there be small errors $d b, d c$, dA in the measured values of $\mathrm{b}, \mathrm{c}, \mathrm{A}$, show that the error in the calculated value of a is given by

$$
d a=\cos C d b+\cos B d c+b \sin C d A
$$

36. If z be a differentiable function of x and y and if

$$
x=c \cosh u \cos v, y=c \sinh u \sin v,
$$

then prove that

$$
\frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}=\frac{1}{2} c^{2}(\cosh 2 u-\cos 2 v)\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right) .
$$

37. If $F(u, v)$ is a twice differentiable function of u, v and if $u=x^{2}-y^{2}$ and $v=2 x y$, prove that

$$
4\left(u^{2}+v^{2}\right) \frac{\partial^{2} F}{\partial u \partial v}+2 u \frac{\partial F}{\partial v}+2 v \frac{\partial F}{\partial u}=x y\left(\frac{\partial^{2} F}{\partial x^{x}}-\frac{\partial^{2} F}{\partial y^{2}}\right)+\left(x^{2}-y^{2}\right) \frac{\partial^{2} F}{\partial x \partial y} .
$$

38. A differentiable function $f(x, y)$, when expressed in terms of the new variables u and v defined by

$$
x=\frac{1}{2}(u+v), y=\sqrt{ }(u v)
$$

becomes $\mathrm{g}(\mathrm{u}, \mathrm{v})$; prove that

$$
\frac{\partial^{2} \mathrm{E}}{\partial \mathrm{a} \partial \mathrm{v}}=\frac{1}{4}\left(\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{2}}+2 \frac{\mathrm{x}}{\mathrm{y}} \frac{\partial^{2} \mathrm{f}}{\partial x \partial y}+\frac{\partial^{2} \mathrm{f}}{\partial y^{2}}+\frac{1}{y} \frac{\partial \mathrm{f}}{\partial y}\right) .
$$

39. Given that F is a differentiable function of x and y and that

$$
x=e^{w}+e^{-w} y=e^{v}+e^{-u}
$$

prove that
$\frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{u}^{2}}-2 \frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{~F}} \frac{\partial \mathrm{v}}{\mathrm{v}}+\frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{w}^{2}}=\mathrm{x}^{2} \frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{x}^{2}}-2 \mathrm{xy} \frac{\partial^{2} \mathrm{~F}}{\partial x \partial y}+\mathrm{y}^{2} \frac{\partial^{2} \mathrm{~F}}{\partial y^{2}}+\mathrm{x} \frac{\partial \mathrm{F}}{\partial y}+\mathrm{y} \frac{\partial \mathrm{F}}{\partial y}$.
40. If $f(x, y)=\left\{\begin{array}{c}x y\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) \text {, when }(x, y) \neq(0,0) \\ 0 \text {, when }(x, y)=(0,0)\end{array}\right\}$,
show that $f_{x y}(0,0) \neq f_{y x}(0,0)$.
41. If $(x, y)=\left\{\begin{array}{c}\left(\frac{x y}{x^{2}+y^{2}}\right), \text { when }(x, y) \neq(0,0) \\ 0, \text { when }(x, y)=(0,0)\end{array}\right\}$,

Show that both the partial derivatives f_{x} and f_{y} exist at $(0,0)$ but the function is not continuous thereat.
42. Show that the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\sqrt{|x y|}$ is not differentiable at $(0,0)$, but that f_{x} and f_{y} both exist at the origin and have the value 0 .
43. Show that the expansion of $f(x, y)=\sin x y$ in powers of $(x-1)$ and $\left(y-\frac{\pi}{2}\right)$ upto and including second degree terms is

$$
1-\frac{1}{8} \pi^{2}(x-1)^{2}-\frac{1}{2} \pi(x-1)\left(y-\frac{\pi}{2}\right)-\frac{1}{2}\left(y-\frac{\pi}{2}\right)^{2}
$$

44. Examine for maximum and minimum values of

$$
f(x, y, z)=2 x y z-4 z x-2 y z+x^{2}+y^{2}+z^{2}-2 x-4 y+4 z .
$$

Ans) The given function has five stationary points $(\mathbf{0}, \mathbf{3}, 1),(\mathbf{0}, \mathbf{1}, \mathbf{1}),(\mathbf{1 , 2 , 0}),(\mathbf{2}, 1,1),(\mathbf{2}, \mathbf{3},-\mathbf{1})$.
The function is neither maximum nor minimum at $(\mathbf{0}, \mathbf{3}, 1),(0,1,-1),(\mathbf{2}, \mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{3},-1)$.
The function is minimum at $(1,2,0)$.

SERIAL NUMBER 2:

INFINITE SERIES

1. Test the convergence of the series

$$
\frac{1+2}{2^{3}}+\frac{1+2+3}{3^{3}}+\frac{1+2+3+4}{4^{3}}+\ldots
$$

[Ans: Divergent]
2. Test the convergence of the series

$$
1+\frac{1}{2} \cdot \frac{1}{3}+\frac{1.3}{2.4} \cdot \frac{1}{5}+\frac{1.3 \cdot 5}{2.4 .6} \cdot \frac{1}{7}+\ldots
$$

[Ans: Convergent]
3. Test the convergence of the series

$$
\frac{5}{1.2 .4}+\frac{7}{2.3 .5}+\frac{9}{3.4 .6}+\frac{11}{4.5 .7}+\ldots
$$

[Ans: Convergent]
4. Examine the convergence of the series

$$
1+\frac{2^{2}}{3^{2}}+\frac{2^{2} \cdot 4^{2}}{3^{2} \cdot 5^{2}}+\frac{2^{2} \cdot 4^{2} \cdot 6^{2}}{3^{2} \cdot 5^{2} \cdot 7^{2}}+\ldots
$$

[Ans: Divergent]
5. Examine the convergence of the series

$$
\frac{1}{3}+\left(\frac{2}{5}\right)^{2}+\left(\frac{3}{7}\right)^{3}+\ldots .+\left(\frac{n}{2 n+1}\right)^{n}+\ldots
$$

[Ans: Convergent]
6. Examine the convergence of the series

$$
1+\frac{1}{2^{3}}+\frac{1}{2^{2}}+\frac{1}{2^{5}}+\frac{1}{2^{4}}+\ldots
$$

7. Test the convergence of the series

$$
\sum_{n=1}^{\infty}\left\{\frac{2 \cdot 4 \cdot 6 \cdot 8 \ldots .2 n}{3 \cdot 5 \cdot 7 \cdot 9 \ldots .(2 n+1)}\right\}^{2}
$$

[Ans: Divergent]
8. Using Comparison test prove that the series $\sum_{n=1}^{\infty} e^{-n^{2}}$ and $\sum_{n=1}^{\infty} \sin ^{3}\left(\frac{1}{n}\right)$ both converges.
9. The series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ converges by using Ratio test.
10. Investigate the convergence of the series:

$$
1+\frac{1}{2^{3}}+\frac{1}{2^{2}}+\frac{1}{2^{5}}+\frac{1}{2^{4}}+\cdots .
$$

[Ans: Convergent]
11. The series $1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\frac{1}{5^{p}}+\cdots$ converges for $p>1$ and diverges for $p \leq 1$.
12. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n}$.
[Ans: Divergent]
13. If $\sum_{n=1}^{\infty} u_{n}$ be convergent series of positive real numbers prove that $\sum_{n=1}^{\infty} u_{n}^{2}$ is convergent.
14. Prove that the series $\frac{a}{b}+\frac{a(a+c)}{b(b+c)}+\frac{a(a+c)(a+2 c)}{b(b+c)(b+2 c)}+\ldots \ldots, a, b, c>0$ is convergent if $b>a+c$ and $b \leq a+c$.
15. Test the convergence of the series:

$$
\tan \left(\frac{\pi}{4}\right)+\tan \left(\frac{\pi}{8}\right)+\tan \left(\frac{\pi}{12}\right)+
$$

\qquad [Ans: Convergent]
16. Test the convergence of the series $\sum_{n=1}^{\infty} u_{n}$, where $u_{n}=\sqrt{n^{4}+1}-n^{2}$. [Ans: Convergent]
17. Investigate the convergence of the series:
$\frac{1}{\log 2}+\frac{1}{\log 3}+\frac{1}{\log 4}+\cdots$.
[Ans: Divergent]
18. Examine the convergence of $\frac{1^{2}}{2}+\frac{2^{2}}{2^{2}}+\frac{3^{2}}{2^{3}}+\frac{4^{2}}{2^{4}}+\ldots \ldots$.
[Ans: Convergent]
19. Using comparison test examine the convergence

$$
\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\ldots \ldots \ldots+\frac{1}{(2 n-1)(2 n)}+\ldots \ldots
$$

[Ans. Convergent]
20. Examine the convergence by D'Alembert's principle

$$
\frac{4}{1!}+\frac{4^{2}}{2!}+\frac{4^{2}}{3!}+\frac{4^{2}}{4!}+\ldots \ldots \ldots \ldots .+\frac{4^{2}}{n!}+\ldots
$$

[Ans. Convergent]
21. Examine the convergence of the series $\sum u_{n}$, where $u_{n}=\frac{2^{n}}{(n+1)^{n}}$. [Ans. Convergent]
22. Examine the convergence of $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.
[Ans. Divergent]
23. Examine the convergence of the series $\sum u_{n}$, where $u_{n}=\frac{x^{n}}{n!}(x>0)$. [Ans. Convergent]
24. Examine the convergence of the series $\sum u_{n}$, where $u_{n}=\frac{\sqrt{n}}{n^{3}+1}$. [Ans. Convergent]
25. Apply Cauchy's root test check the convergence of the series

$$
\frac{1+2}{2.1}+\left(\frac{2+2}{2.2}\right)^{2}+\left(\frac{3+2}{2.3}\right)^{3}+\ldots \ldots .+\left(\frac{n+2}{2 . n}\right)^{n}+\ldots . .
$$

[Ans. Convergent]
26. Apply Cauchy's root test check the convergence of the series

$$
\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{4^{3}}+\ldots \ldots+\frac{1}{(n+1)^{n}}+\ldots .
$$

[Ans. Convergent]

27. Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^{3 n}}{2^{n}} \cdot[$ Ans. $\sqrt[3]{2}$]
28. Determine the radius of convergence of the power series $x+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{3^{3}}+\frac{x^{4}}{4^{4}}+\ldots$
[Ans. 1]

SERIAL NUMBER 3:

MULTIPLE INTEGRALS

1. Evaluate $\iint_{R}\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right) d x d y$, where R consists of points in the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
[Ans: $\frac{\pi a b}{8}$]
2. Evaluate $\iint_{E}\left(x^{2}+y^{2}\right) d x d y$, over the region E bounded by

$$
x y=1, y=0, y=x, x=2 .
$$

[Ans: $\frac{47}{24}$]
3. Evaluate $\iint \sqrt{\left(4 x^{2}-y^{2}\right)} d x d y$, over the triangle formed by the straight lines

$$
y=0, x=1, y=x
$$

[Ans: $\frac{\sqrt{3}}{6}+\frac{\pi}{9}$]
4. Show that $\iiint_{E}\left(a^{2} b^{2} c^{2}-b^{2} c^{2} x^{2}-c^{2} a^{2} y^{2}-a^{2} b^{2} z^{2}\right)^{1 / 2} d x d y d z=\frac{\pi^{2}}{4} a^{2} b^{2} c^{2}$, where E is the region bounded by the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
5. Show that $\iiint_{E} \frac{d x d y d z}{(1+x+y+z)^{3}}=\frac{1}{2}\left(\ln 2-\frac{5}{8}\right)$, where E is the tetrahedron bounded by the planes $x=0, y=0, z=0, x+y+z=1$.
6. By changing the order of integration, prove that

$$
\int_{0}^{1} d x \int_{0}^{\left(1-x^{2}\right)^{1 / 2}} \frac{d y}{\left(1+e^{y}\right) \sqrt{1-x^{2}-y^{2}}}=\frac{\pi}{2} \ln \left(\frac{2 e}{1+e}\right)
$$

7. Find the area of that part of the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ which lies between the coordinate planes.
[Ans: $\frac{1}{2} \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}$]
8. Prove that the area of the surface of the sphere $x^{2}+y^{2}+z^{2}=9$ is 36π.
9. Prove that the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ is $\frac{4}{3} \pi a b c$.
10. Evaluate $\iint x y(x+y) d x d y$ over the region bounded by $y=x^{2}$ and $y=x$. [Ans: $\frac{3}{56}$]
11. Prove that $\int_{0}^{1} d x \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y \neq \int_{0}^{1} d y \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x$. Does the double integral $\iint_{E} \frac{(x-y)}{(x+y)^{3}} d x d y$ exists if $E=[0,1 ; 0,1]$? . Justify your answer.
12. Express $\int_{0}^{\frac{\pi}{2}} d x \int_{0}^{\cos x} x^{2} d y$ as a double integral and evaluate it. [Ans. $\left(-8+\pi^{2}\right) / 4$]
13. Show that $\iint_{D} e^{\frac{y}{x}} d x d y$ where D is the triangle bounded by $y=x, y=0$ and $x=1$ is $\frac{(e-1)}{2}$.
14. Show that $\iint x^{\frac{1}{2}} y^{\frac{1}{3}}(1-x-y)^{\frac{2}{3}} d x d y$ over the triangle bounded by

$$
x=0, y=0 \text { and } x+y=1 \text { is } \frac{\Gamma\left(\frac{5}{3}\right) \Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{9}{2}\right)} .
$$

15. Show that $\iint e^{\frac{y-x}{x+y}} d x d y$ taken over the triangle with vertices at $(0,0),(0,1)$ and $(1,0)$ is $\frac{1}{4}(e-1 / e)$.
16. Find the area bounded by one arch of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ and the x -axis.
17. Find the volume of the solid generated by revolving the cardioide $r=a(1-\cos \theta)$ about the initial line.
18. Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y \quad$ over the region in the positive quadrant for which

$$
x+y \leq 1 . \quad\left[\text { Ans. } \frac{1}{6}\right. \text {] }
$$

19. Evaluate $\iint x y(x+y) d x d y$ over the area bounded by $y=x^{2}$ and $y=x$.
[Ans. $\frac{a^{3}}{3} \log (\sqrt{2}+1)$]
20. Evaluate by suitable transformations, $\iint(x+y)^{2} d x d y$ over the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 . \quad\left[\text { Ans. } \frac{\pi a b\left(a^{2}+b^{2}\right)}{4}\right]
$$

21. Evaluate by suitable transformations, $\iint x^{2} y d x d y$ over the positive quadrant of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 . \quad\left[\text { Ans. } \frac{a^{3} b^{2}}{15}\right]
$$

22. Evaluate by suitable transformations, $\iint r^{2} \sin \theta d r d \theta$ over the upper half of the circle $r=2 a \cos \theta$.
[Ans. $\frac{2 a^{3}}{3}$]
23. Evaluate $\iint x y d x d y$ over the positive quadrant of the circle $x^{2}+y^{2}=a^{2}$. [Ans. $\frac{a^{4}}{8}$]
24. Evaluate $\int_{0}^{1} d y \int_{y}^{1} e^{-x^{2}} \mathbf{d x}$
[Ans. $(-1+e) / 2 e]$
25. Evaluate $\int_{0}^{\pi / 2} \int_{0}^{\pi} \cos (x+y) d x d y$.
[Ans. -2]
26. Evaluate: $\iint_{R} y d x x d y$ where R is the region bounded by the parabolas $y^{2}=4 x$ and

$$
x^{2}=4 y
$$

[Ans. $\frac{48}{5}$]
27. Evaluate $\iint\left(a^{2}-x^{2}-y^{2}\right) d x d y$ over the semi circle $x^{2}+y^{2}=a x$ in the first quadrant. [Ans. $\frac{5 \pi a^{4}}{64}$]
28. Show that $\int_{0}^{1} d x \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y \neq \int_{0}^{1} d y \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x$.
29. Evaluate $\iint \sqrt{\left[\frac{1-\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)}{1+\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)}\right]} d x d y$ over the positive quadrant of the ellipse
$\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$.
[Ans. $\frac{1}{4} a b \pi\left(\frac{1}{4} \pi-1\right)$]
30. By using the transformations $x+y=u, y=u v$, show that $\int_{x=0}^{1} \int_{y=0}^{1-x} e^{\frac{y}{x+y}} d y d x=\frac{e-1}{2}$.
31. Transform the integral $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y \sqrt{x^{2}+y^{2}} d x d y$ by changing to polar coordinates and hence evaluate it.

$$
\text { [Ans } \frac{a^{4}}{4} \text {] }
$$

32. Evaluate $\iint \sqrt{\left(4-x^{2}-y^{2}\right)} d x d y$ over the region bounded by the semicircle $x^{2}+y^{2}-2 x=0$ lying in the first quadrant.
[Ans. $\frac{4}{3}\left(\pi-\frac{4}{3}\right)$]
33. Evaluate $\iint\left[\frac{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}}{1+\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}}\right]^{1 / 2} d x d y$ over the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
[Ans. $a b \frac{\pi(\pi-2)}{8}$]
34. Change the order of integration in $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$ and hence evaluate this. [Ans. $\frac{3}{8}$]
35. Find the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.
[Ans. $\frac{16 a^{2}}{3}$]
36. Find the volume of the tours generated by revolving the circle $x^{2}+y^{2}=4$ about the line $x=3$. [Ans. $24 \pi^{2}$]
