DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR Control Systems Simulation Laboratory (EE-751)

7th Semester Electrical

Experiment No. 751/1

I. Title: SHAPING THE TIME RESPONSE

II. <u>Objective</u>: To plot the step and impulse response of a system and find range of K for stability using Routh's Criterion

III. <u>Apparatus:</u> PC with MATLAB©; Calculator

IV. Experiments: Work out and compute problems step by step and submit the results in report sheets.

1.1: First Order Type Zero Transfer Function (T. F.)-

$$G_1(s) = \frac{1}{(s+\sigma)} \tag{1.1}$$

- 1. Locate the pole in the s-plane for $\sigma > 0$. Comment on the stability.
- 2. Find the time constant T.
- 3. Compute the Impulse Response of the system $G_1(s)$.
- 4. Compute the step response for $\sigma = 1$.
- 5. Invoke $MATLAB^{\mathbb{C}}$ and:
 - i) Enter the transfer $G_1(s)$ for $\sigma = 1$.
 - ii) Plot the Impulse Response and Step Response on same axes.
 - iii) Roughly sketch the plots.

1.2: Non min Phase T. F. between Elevator Input and Altitude of a Boeing 747 aircraft:

$$\frac{h(s)}{\partial_e(s)} = \frac{30(s-6)}{s(s^2+4s+13)} = G_2(s)$$
(1.2)

- 1. Locate the poles and zeroes of the system $G_2(s)$ on the s-plane.
- 2. In MATLAB[©] plot altitude response to a 1^{0} impulse input in the elevator for t = 0 to 6 secs.
- 3. Roughly sketch the plot, <u>comment on its nature</u> and fill up **Table 1**.
- 4. Compare the denominator of $G_2(s)$ with that of standard 2nd order system and then find the Natural Frequency of Oscillation, ω_n and the Damping Ratio, ξ .
- 5. Using ω_n and ξ found in step 4 calculate the time domain specifications and fill in **Table1.**
- 6. Comparing the values in Table 1, comment on the accuracy of MATLAB $^{\odot}$

1.3: Closed Loop Proportional Control:

Consider the block diagram of a Feedback Control System with variable forward path gain K:

With, $G_3 = \frac{(s+1)}{s(s-1)(s+6)}$

- 1. Comment on the stability of the Open Loop System
- 2. Using Routh's array find range of K for (closed loop) stability. Let critical K be K_{cr} .
- 3. Invoke MATLAB[®]. Find <u>open loop loop poles for $K = K_{cr}$, (K_{cr}+4.5), (K_{cr}+6.5).</u>
- 4. For these values of K <u>plot impulse responses (on same axes</u>) for t = 0 to 12 secs. ('axis')
- 5. Record <u>rough sketch</u> of the plot.

Experiment No. 751/2

I. Title: SATELLITE ATTITUDE CONTROL USING P-D CONTROLLER

II. <u>**Objective:**</u> A Proportional Derivative (P-D) controller is designed by shaping the Root Locus for Satellite Attitude Control.

III. Apparatus: PC with MATLAB/SIMULINK©; Calculator

IV. Experiments: Work out and compute problems step by step and submit the results in report sheets.

2.1: Root Locus of the Plant: - Control of attitude of a satellite described by a "double integrator" plant:

$$G_4(s) = \frac{1}{s^2}$$
(2.1)

- 1. Apply unity feedback around $G_{\Delta}(s)$ along with a forward path gain K as in **Fig 1**.
- 2. Draw the <u>Root Locus</u> for variable K. Fill up **Table 2**.
- 3. Invoke MATLAB[©]. Use "rlocus" to draw Root Locus with axes: <u>(use "axis" command)</u> X- axis (-6,2) and Y-axis (-3, 3). Record rough sketch.
- 4. <u>Comment on the i) Root Locus and from the Root Locus ii) Predict the transient response</u> of the closed loop system.

2.2: Root Locus based P-D control of the Plant:-

1. The characteristic equation of (2.1) with P-D control is:

$$1 + (K_P + K_D s)\frac{1}{s^2} = 0 \tag{2.2}$$

2. To put (2.2) in Root Locus form, define $K = K_D$, and arbitrarily select $\frac{K_P}{K_D} = 1$, which gives:

$$1 + K \frac{(s+1)}{s^2} = 0 \tag{2.3}$$

- 3. Draw the <u>Root Locus</u> of (2.3) for variable K. Fill up **Table 2**.
- 4. Invoke MATLAB[©]. Draw the Root Locus with axes: X- axis (-6,2) and Y-axis (-3, 3). Record rough sketch.
- 5. <u>Comment on the change in i) Root Locus due to addition of controller zero and from root</u> <u>locus predict ii) Transient Response of the closed loop system with the P-D control.</u>

Experiment No. 751/3

I. <u>Title</u>: FREQUENCY RESPONSE

II. Objective: To draw Bode and Nyquist plots

III. Apparatus: PC with MATLAB/SIMULINK©; Calculator; Semilog Graph Paper.

IV. <u>Experiments:</u> Work out and compute the problems step by step and submit results in report sheets.3.1: Bode Plot of a standard second order system – Consider the standard second order system:

$$G_{5}(s) = \frac{\omega_{n}^{2}}{(s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2})}$$
(3.1)

1. Draw the Bode Plots (Magnitude and Phase) for $\xi = 0.2$, 0.5 and 0.9 <u>on Semilog papers</u>. Add corrections to the straight line asymptotes using the <u>resonant peak</u> given by its absolute value

$$M_r = \frac{1}{2\xi}$$
, at $\omega = \omega_r$

2. Invoke MATLAB[©]. Draw Bode Plots for $\xi = 0.2, 0.5, 0.7$ and 0.9. Record rough sketches.

3. Compare the plots obtained in steps 1 and 2 for similar values of ξ .

3.2: Nyquist Plot of an open loop unstable system - Consider the block diagram in Fig. 1 with

$$G_6(s) = \frac{(s+1)}{s(0.1s-1)} \tag{3.2}$$

- 1. Draw the Nyquist Plot of $G_6(s)$. Comment on the (closed loop) stability.
- 2. Also find range of K for stability from the plot.
- 3. Invoke MATLAB[©]. Draw the Nyquist plot with axes: (use "nyquist" command) X- axis (-5,5) and Y-axis (-5, 5)
- 4. Compare the plots obtained in steps 1 and 3. <u>Also note the Phase Cross Over Freq.</u>

Experiment No. 751/4

I. Title: STATE SPACED MODELLING AND CONTROL

II. Objective: To find Time Response, Transfer Function and Eigen Values. Design an LSVF controller.

III. Apparatus: PC with MATLAB/SIMULINK©

IV. Experiments: Compute the problems step by step and submit the results in report sheets.

<u>4.1: Cruise Control Step Response</u> – The equation of forward motion of a car where the engine imparts the a force "u(t)" is given by:

$$\ddot{x}(t) + \frac{b}{m}\dot{x}(t) = \frac{u(t)}{m},$$
(4.1)

where mass, m = 1000 kg, damper constant, b = 50 N-sec/m.

- 1. Derive the state space model of (4.1), taking the car position, x(t) and velocity, v(t) as the two states; the car position, x(t) as the output and the force, u(t) as the input. Find the A, B, C, D matrices.
- 2. Invoke MATLAB[©]. Enter the A, B, C, D matrices in the workspace and then find:
- 3. the <u>Transfer Function</u> G(s) from A, B, C, D. ('ss2tf')
- 4. the poles of G(s) and eigenvalues of A matrix. ('roots', 'eig')
- 5. Now obtain <u>step response</u> to an input $\underline{u(t)} = 500$ N by multiplying B*500 in the model (since built in MATLAB[©] function <u>"step"</u> computes step response to a <u>unit</u> step signal). (Use: 'ss' and 'sys')
- 6. <u>Record a rough sketch</u> of the plot.

4.2: Linear State Variable Feedback (LSVF) design for Satellite attitude Control - The single axis

motion (angular position) of a satellite with <u>input torque "u(t)"</u> is given by:

$$I\ddot{\theta}(t) = d u(t),$$

(4.2)

where, $d = 1 \text{ m}, I = 5000 \text{ kg-m}^2$.

- 1. Derive the state space model of (4.2), taking angular position, $\theta(t)$ and angular velocity, $\dot{\theta}(t)$ as the two states; angular position, $\theta(t)$ as output and input torque, u(t) as the input. Find the <u>A, B, C, D matrices</u>.
- 2. Invoke MATLAB[©]. Enter the A, B, C, D matrices in the workspace and then find:
- 3. the <u>Transfer Function</u> *G*(*s*) from A, B, C, D. ('ss2tf')
- 4. the <u>poles</u> of G(s) and <u>eigenvalues</u> of A matrix. (**'roots', 'eig'**) Comment on the <u>open loop stability</u>.
- 5. Find desired the closed loop poles, s_d with $\omega_n = 1$ rad/sec and $\xi = 0.707$). Fill Table 3.
- 6. Find <u>LSVF controller K</u> (using MATLAB^{$^{\circ}$} function "place") to place the CL poles at s_d.
- 7. Validate the design by checking eigen values of CL system matrix. Fill Table 3.

	Natural Freq	Damping	Rise Time	Settling Time	Peak
		Ratio			Overshoot
	ω _n	Ξ	t _r	t _s	$M_p(p.u.)$
Calculated					
Value					
Value from					
MATLAB					

Table 2								
Transfer	Centroid	Angle of Asymptotes	Break Away Point	Angle of Departure				
Function								
$\frac{1}{s^2}$								
$\frac{(s+1)}{s^2}$								

Table 3

	Desired CL poles	LSVF controller	CL Eigen Values	
	s _d	К	(To Verify)	
Value from MATLAB				

References:

1. Feedback Control of Dynamic Systems – G. F. Franklin, J. David Powell and A. Emami-Naeini.